Research

I work primarily with observations (i.e. data). I am interested in the large-scale monitoring of the Earth’s surface and climate. My past and current work include mapping out from space the Earth’s topography, bathymetry and gravity field, using radars, lidars, sonars and gravimeters, among others. I develop algorithms for remote-sensing applications and use computer clusters to process large-scale satellite measurements. I am a strong advocate of open source and open data!

Ice sheet mass change

Integration of 16+ years of satellite laser altimetry measurements over Antarctica and Greenland.

State-of-the-art ice-sheet surface elevation change for Antarctica and Greenland since 2003, estimated from two NASA satellite laser altimetry missions (ICESat, 2003-2009; and ICESat-2, 2018-present). These very precise laser measurements allows us to study decadal and multi-decadal trends at unprecedented spatial resolution; providing an invaluable dataset for advancing ice-sheet data assimilation efforts into climate models and for disentangling the causal mechanisms responsible for ice-sheet mass change and consequent sea-level rise.

Checkout our paper in Science

Image

Hi-res ice elevation record

A greatly improved 25-year record of ice shelf elevation at high temporal and spatial resolution.

Constructing ice-shelf elevation and melt-rate time series (meltwater production) at unprecedented spatiotemporal resolution. Satellites: ERS-1 + ERS-2 + Envisat + CryoSat-2 + ICESat + ICESat-2. Time span: 1992-present (27+ years). Temporal resolution: 3 months. Spatial resolution: 3-5 km. Grid posting: 1 km.

Image

ITS_LIVE project

NASA MEaSUREs Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE).

We will accelerate ice sheet and glacier change research by producing a globally-comprehensive and temporally dense multi-sensor record of land ice and ice shelf velocity and elevation, updated in near-real time as new data become available. Such a record is not presently available to the community, slowing scientific discovery from these information-rich data streams. Budget: $4.2M, 2018-2023.

Checkout the project

Image

Ice shelf dynamics

Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves.

Confined ice shelves restrain the flow of upstream ice streams and glaciers. Thinning of ice shelves increases the longitudinal stress and with it the spreading rate at the grounding line (GL). This effect transmits some distance upstream, and the net results is an increase in ice flux across the GL. (a) Ice shelf thickness (H) and ice flow prior to onset of ice shelf thinning. (b) Onset of ice shelf thinning (thickness loss in red) reduces buttressing and increases both longitudinal spreading and ice flux across the GL, speeding up glacier discharge into the ocean.

Checkout our paper in Geophysical Research Letters

Image

CAP-Toolkit Package

JPL Cryosphere Altimetry Processing Toolkit (a Python package).

Set of Python tools for processing and integrating multi-satellite and airborne altimetry data. Authors: F. Paolo (Lead developer), J. Nilsson and A. Gardner.

Checkout the project

Image

ICESat-2 Mission

NASA’s Ice, Cloud and Elevation Satellite 2.

The ICESat-2 will measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. Launched September 15, 2018, ICESat-2 carries a photon-counting laser altimeter that will allow scientists to measure the elevation of ice sheets, glaciers, sea ice and more - all in unprecedented detail.

Our planet’s frozen and icy areas, called the cryosphere, are a key focus of NASA’s Earth science research. ICESat-2 will help scientists investigate why, and how much, our cryosphere is changing in a warming climate. The satellite will also measure heights across Earth’s temperate and tropical regions, and take stock of the vegetation in forests worldwide.

Read more

Image

JPL ECCO project

Estimating the Circulation and Climate of the Ocean (ECCO).

The ECCO consortium is directed at making the best possible estimates of ocean circulation and its role in climate. Solutions are obtained by combining state-of-the-art ocean circulation models with nearly complete global ocean data sets in a physically and statistically consistent manner. Products are being utilized to understanding ocean variability, biological cycles, coastal physics, and geodesy, and are available for general applications.

Read more

Image

Ice & climate variability

Investigating how the Antarctic ice shelves respond to climate variability such as El Niño/Southern Oscillation.

Figure: Relative influence of ENSO along the Antarctic Pacific margin. (a) Regional variation of the similarity index (size and color of squares) between ice-shelf height-anomaly records and the time-integrated Oceanic Niño Index (ONI). (b) 12-month running integral of ONI (that is, ENSO) lagged by ~6 months (top plot) and 12-month running means of ice-shelf height anomalies for the combined Amundsen (AMU) ice shelves and six individual ice shelves; the shaded area highlights the large height change resulting from the 1997–2001 El Niño-to-La Niña transition.

Checkout our paper in Nature Geoscience

ICESat and CryoSat-2 studies

Multi-sensor analyses of Antarctic ice shelf response to climate variability.

Developing a detailed history of Antarctic ice-shelf mass and stress changes on seasonal-to-interannual time scales and small spatial scales; improve our understanding of the environmental processes that cause these changes; and assess whether proxies for variability of the ice-shelf mass budget can be obtained from coarse-grid global climate models (GCMs). Our main data sources for this study are: ICESat laser altimeter data (2003-2009); Operation IceBridge (OIB) airborne laser altimeter and radio echo sounding (RES) ice thickness data (2009-present); CryoSat-2 radar altimeter (RA) data (2010-present); and European Space Agency (ESA) RA satellites ERS-1, ERS-2 and Envisat (1992-2012). Budget: $637k, 2013–2016; $385k, 2017–2019.

Image

Multi-satellite Data Fusion

Constructing long-term continuous time series of ice-shelf height change from multiple satellite altimeters.

Figure: Representation of our multi-referenced time series approach. (Left) individual time series of cumulative change. (Right) diagram representing the matrix formed with the time series on the left (one time series per row). From top to bottom is depicted the process of forming single-grid-cell frequency-average time series.

Checkout our paper in Remote Sensing of Environment

Time Series Analysis

Geophysical Data Analysis

Large-scale analysis and statistical modeling applied to Earth observations.

Figure: Estimated radar extinction coefficient (ke) over the Antarctic Ice Sheet. Values of ke shown are the averages from all ERS-1 Phase C (May 1992 to December 1993) ocean-mode waveforms acquired over the ice sheet, derived using a surface/volume retracking algorithm (Davis & Moore, 1993). Note that ke (which is inversely related to the penetration depth) is generally higher over the ice shelves than on the interior plateau.

Checkout my PhD Dissertation

Time Series Analysis

Ice shelf volume change

Multi-mission satellite altimetry to investigate long-term trends and variability in Antarctic ice-shelf thickness.

Figure: Eighteen years of changes in the Antarctic ice shelves. Color map is rate of thickness change, circles are percentage thickness gained or lost, time series are mean ice-volume change over 18 years. There is considerable variability in the height-change signal, and trends on short time intervals are not representative of the underlying decadal trends.

Check out our paper in Science

Antarctic ice shelves

Gravity from satellites & ships

Satellite-derived sea surface gradients and shipborne gravimetry for an integrated marine gravity field.

Figure: Integrated gravity models constructed using sea surface gradients (slopes), derived from satellite altimetry (Geosat and ERS-1), and marine gravity data (ships) along the Brazilian coast: (left) free-air gravity anomaly and (right) geoid height. Unlike spectral methods (deterministic approach), the least squares collocation (stochastic approach) presented a low content of high-frequency noise in the predicted gravity anomalies.

Checkout our paper in Journal of Geodynamics

Gravity and Geoid Brazil


research · press · publications · reflection · fernando? · main